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Abstract

We present a general algorithm of image based regression
that is applicable to many vision problems. The proposed
regressor that targets a multiple-output setting is learned
using boosting method. We formulate a multiple-output re-
gression problem in such a way that overfitting is decreased
and an analytic solution is admitted. Because we represent
the image via a set of highly redundant Haar-like features
that can be evaluated very quickly and select relevant fea-
tures through boosting to absorb the knowledge of the train-
ing data, during testing we require no storage of the training
data and evaluate the regression function almost in no time.
We also propose an efficient training algorithm that breaks
the computational bottleneck in the greedy feature selection
process. We validate the efficiency of the proposed regressor
using three challenging tasks of age estimation, tumor de-
tection, and endocardial wall localization and achieve the
best performance with a dramatic speed, e.g., more than
1000 times faster than conventional data-driven techniques
such as support vector regressor in the experiment of endo-
cardial wall localization.

1. Introduction
Consider the following vision tasks shown in Figure 1: (A)
Given an image of a human face, can the computer tell
his/her age? (B) Given a computer tomography (CT) image
containing a pulmonary tumor, can the computer detect the
tumor’s position and anisotropic spread? (C) Given an ul-
trasound image of human heart or echocardiogram, can the
computer automatically delineate the endocardial wall of
the left ventricle? The above seemingly heterogeneous tasks
can be solved using a general technique of image based re-
gression (IBR).

The problem of IBR is defined as follows: Given an im-
age x, we are interested in inferring an entity y(x) that is
associated with the image x. The meaning of y(x) varies
a lot in different applications. For example, it could be a
feature characterizing the image (e.g., the human age in the
problem A), a parameter related to the image (e.g., the po-
sition and anisotropic spread of the tumor in the problem
B), or other meaningful quantity (e.g., the location of the

Age?
(a) (b) (c)

Figure 1: Three image based regression tasks: (a) Age estima-
tion; (b) Tumor detection; and (c) Endocardial wall delineation.

endocardial wall in the problem C).
IBR is an emerging challenge in the vision literature. In

the article of Wang et al. [15], support vector regression
was employed to infer a shape deformation parameter. In
a recent work [2], Agarwal and Triggs used relevance vec-
tor regression to estimate a 3D human pose from silhou-
ettes. However, in the above two works, the inputs to the
regressors are not images themselves, rather pre-processed
entities, e.g., landmark locations in [15] and shape context
descriptor in [2].

Numerous algorithms [8] were proposed in the machine
learning literature to attack the regression problem in gen-
eral. Data-driven approaches gained prevalence. Popular
data-driven regression approaches include nonparameteric
kernel regression (NPR), linear methods and their nonlinear
kernel variants such as kernel ridge regression (KRR), sup-
port vector regression (SVR), etc. We will briefly review
them in section 2. However, it is often difficult or ineffi-
cient to directly apply them to vision applications due to the
following challenges.

Curse of dimensionality. The input (i.e. image data) is
of very high dimensional, which manifests the phenomenon
commonly referred to as curse of dimensionality. Ideally, in
order to well represent the sample space, the number of re-
quired image samples should be exponential to the cardinal-
ity of the input space. However, in practice, the number of
training samples is often extremely sparse, compared with
the cardinality of the input space. Overfitting is likely to
happen without a careful treatment.

Varying appearance. First, there are a lot of factors that
affect the appearance of the foreground object of interest.
Apart from the intrinsic differences among the objects, ex-
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trinsic factors include camera system, imaging geometry,
lighting conditions, makeup, etc. Second, the variation
arises from the presence of background whose appearance
varies too. The third variation is caused by alignment. The
regression technique must either tolerate the alignment error
(as in the problem A) or regress out the alignment parameter
(as in the problems B and C).

Multiple output. The output variable is also of high
dimensional. Most regression approaches, such as SVR,
can deal with the single-output regression problem very ro-
bustly. Extending them to the multiple-output setting is
nontrivial as in the case of SVR. A naive practice of decou-
pling a multiple-output problem to several isolated single-
output tasks ignores the statistical dependence among dif-
ferent dimensions of the output variable.

Storage and computation. The regression techniques
such as NPR, KRR, and SVR are data-driven. There are
two main disadvantages of the data-driven approaches: stor-
age and computation. First, the techniques require storing a
large amount of training data. In NPR and KRR, all train-
ing data are stored. In SVR, support vectors are stored1.
Because the training data are images with high dimension,
storing the training images can take a lot of memory space.
Second, evaluating the data-driven regression function is
slow because comparing the input image with the stored
training images is time-consuming.

To overcome the above challenges, we propose an IBR
algorithm using boosting method [4, 5, 7, 12]. AdaBoosting
is the state-of-the-art classification method. After its the-
oretic connection to forward stagewise additive modeling
[7] was discovered, Friedman [6] used boosting as a greedy
function approximation in a regression setting [6]. Multi-
ple additive regression tree (MART) [8] was proposed as a
boosting tree solution to a single-output regression problem.
Duffy and Helmbold [4] also studied boosting methods for
regression for a single-output setting. However, a multiple-
output regression setting is rarely studied in the literature.
In this paper, we focus on this setting that takes images as
inputs. We make the following contributions.

� We formulate the multiple-output regression problem
in such a way that an analytic solution is allowed at each
round of boosting. No decoupling of the output dimension
is performed. Also, we decrease overfitting using an image-
based regularization term that has an interpretation as prior
knowledge and also allows an analytic solution.

� We invoke the boosting framework to perform feature
selection such that only relevant local features are preserved
to conquer the variations in appearance. The use of decision
stumps as weak learners also makes it robust to appearance
change.

� We use the Haar-like simple features [14] that can be

1In our experiments, we found that a large number of support vectors,
often 80%-100% of the training data, are kept.

rapidly computed. We do not store the training data. The
knowledge of the training data is absorbed in the weighting
coefficients and the selected feature set. Hence, we are able
to evaluate the regression function almost in no time during
testing.

� We propose an efficient implementation to perform
boosting training, which is usually a time-consuming pro-
cess if a truly greedy feature selection procedure is used.
In our implementation, we select the features incrementally
over the dimension of the output variable.

2. Review of regression techniques
In this section, we first recapitulate the regression problem
and then briefly review three data-driven regression meth-
ods, namely NPR, KRR, and SVR. Details are covered in
[8]. Below, we assume that x ∈ Rd and y(x) ∈ Rq.

2.1. Regression
Regression finds the solution to the following minimizing
problem:

ĝ(x) = arg min
g∈G

Ep(x,y){L(y(x),g(x))}, (1)

where G is the set of allowed output functions, Ep(x,y) takes
the expectation under the generating distribution p(x,y),
and the L(◦, ◦) function is the loss function that penalizes
the deviation of the regressor output g(x) from the true out-
put y(x).

In practice, it is impossible to compute the expectation
since the distribution p(x,y) is unknown. Given a set
of training examples {(xn,y(xn))}N

n=1, the cost function
Ep(x,y)L(y(x),g(x)) is approximated as the training error

J(g) =
∑N

n=1 L(y(xn),g(xn))/N .
If the number of samples N is infinitely large, the

above approximation is exact by the law of the large num-
ber. Unfortunately, a practical value of N is never large
enough, especially when dealing with image data and high-
dimensional output parameter. A more severe problem is
overfitting: given a limited number of training examples, it
is easy to construct a function g(x) that yields a zero train-
ing error. To combat the overfitting, additional regulariza-
tion constraints are often used, which results in a combined
cost function (ignoring the scaling factor N−1)

J(g) =
N∑

n=1

L(y(xn),g(xn)) + λR(g),

where λ > 0 is the regularization coefficient that controls
the degree of regularization and R(g) is the regularization
term. Regularization often imposes certain smoothness on
the output function or reflects some prior belief about the
output.
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2.2. Nonparametric kernel regression (NPR)
Nonparametric kernel regression (NPR) [8] is a smoothed
version of k-nearest-neighbor (kNN) regression. The kNN
regressor approximates the conditional mean, an optimal es-
timate in the L2 sense. NPR takes the following form:

g(x) =
∑N

n=1 hσ(x;xn)y(xn)∑N
n=1 hσ(x;xn)

,

where hσ(◦;xn) is a kernel function. The most widely used
kernel function is the RBF kernel

hσ(x;xn) = rbfσ(x;xn) = exp(−‖x− xn‖2

2σ2
).

The RBF kernel has a noncompact support. Other kernel
functions with compact supports such as the Epanechnikov
kernel can be used too.

In general, when confronted with the scenario of image
based regression, NPR, albeit smooth, tends to overfit the
data, i.e., yielding a low bias and a high variance.

2.3. Kernel ridge regression (KRR)
Kernel ridge regression (KRR) [8] assumes that the
multiple-output regression function takes a linear form:

g(x) =
N∑

n=1

αnk(x;xn),

where k(x;xn) is a reproducing kernel function and αn is
a q × 1 vector that weights the kernel function. The choices
for the reproducing kernel [13] include the RBF kernel, the
polynomial kernel and so on. The solution to the multiple-
output KRR derived from the training data is

g(x) = Y(K+ λI)−1κ(x),

where Yq×N = [y(x1),y(x2), ...,y(xN )] is the train-
ing output matrix, KN×N = [k(xi;xj)] is the
Gram matrix for the training data, and κ(x)N×1 =
[k(x;x1), k(x;x2), ..., k(x;xN )]T.

In general, when a linear kernel is used, KRR tends to
underfit the data, i.e., yielding a high bias and a low vari-
ance, because it uses a simple linear form. Using the nonlin-
ear kernel function often gives enhanced performance. One
computational difficulty of KRR lies in inverting the N×N
matrix K+ λI.

2.4. Support vector regression (SVR)
Support vector regression (SVR) [13] is a robust regression
method. Its current formulation works for single output
data, i.e. q = 1. SVR minimizes the following cost function

1
2
‖w‖2 + C

N∑
n=1

|y(xn) − g(xn)|ε,

where | ◦ |ε is an ε-insensitive function, g(x) =∑N
n=1 wnk(x;xn) with k(x;xn) being a reproducing

kernel function and wn being its weight, and w =
[w1, w2, . . . , wn]T. Because some of the coefficients wn,
which can be found through a quadratic programming pro-
cedure, are zero-valued, the samples xn associated with
nonzero weights are called support vectors.

SVR strikes a good balance between bias and variance
tradeoff and hence very robust. Unfortunately, directly ap-
plying SVR to the multiple-output regression problem is
difficult.

3. Regression using boosting method
We now define the loss function and the regularization term
that are appropriate for our purpose of developing regres-
sion algorithm using boosting method.

We focus on the L2 loss function. To allow a general
treatment and to deal with the scaling effort of different data
dimensions, we use the normalized error cost:

L(y(x),g(x)) = [y(x) − g(x)]TA[y(x) − g(x)]
= ‖y(x) − g(x)‖2

A,

where Aq×q is a normalization matrix that must be positive
definite.

Regularization exists in various forms. In this paper,
we focus on the following data-driven regularization term
‖µ − g(x)‖2

B, where Bq×q is a normalization matrix that
must be positive definite. This regularization term has a
subspace interpretation with µ being the mean and B−1 be-
ing the covariance matrix.

Hence, it boils down to the following cost function to be
minimized.

J(g) =
N∑

n=1

‖y(xn) − g(xn)‖2
A + λ

N∑
n=1

‖µ − g(xn)‖2
B

=
N∑

n=1

‖r(xn)‖2
A + λ

N∑
n=1

‖s(xn)‖2
B

= tr{ARRT} + λtr{BSST}
= ‖R‖2

A + λ‖S‖2
B,

where r(x) = y(x) − g(x) is the approximation error,
s(x) = u − g(x) is the deviation error, and the matrices
Rq×N and Sq×N are, respectively, defined as follows

R = [r(x1),r(x2), . . . ,r(xN )],S = [s(x1),s(x2), . . . ,s(xN )].

We now resort to the influential framework of boosting
to derive an analytic solution.
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3.1. Boosting
In boosting method for regression, the regression output
function g(x) : Rd → Rq is assumed to take a linear form:

g(x) =
T∑

t=1

αtht(x); ht(x) ∈ H,

where each ht(x) is a weak learner (or weaker function)
and g(x) is a strong learner (or strong function). Further, it
is assumed that a weak function h(x) : Rd → Rq lies in a
dictionary set or weak function set H.

Boosting iteratively approximates the target function
y(x) by adding one more weak function

g′(x) = g(x) + αh(x). (2)

At each round of boosting, we select the function ĥ and its
weight coefficient α̂ that mostly decreases the cost function.
In other words, the following problem is attacked.

(α̂, ĥ) = arg min
α,h∈H

J(g+ αh). (3)

Main theorem: By adding a function αh(x) to the
output function g(x) as in (2), the new cost function J(g′)
maximally decreases the cost function J(g) by a factor of
(1 − ε2(h)), with |ε(h)| ≤ 1.

Proof: As shown in Appendix, the cost function J(g′)
is computed as

J(g′) =
N∑

n=1

‖y(xn) − g′(xn)‖2
A + λ

N∑
i=n

‖µ − g′(xn)‖2
B

= J(g) − 2αtr{(AR+ λBS)HT} + α2‖H‖2
A+λB

= J(g) − 2αtr{DHT} + α2‖H‖2
C,

where C = A + λB, D = AR + λBS, and Hq×N =
[h(x1),h(x2), . . . ,h(xN )].

With the function h fixed, the cost function J(g′) is
quadratic in α so that there is a unique minimizer α̂(h). By

letting ∂J(g′)
∂α = 0, simple algebra yields that

α̂(h) =
tr{DHT}
‖H‖2

C
=

tr{(AR+ λBS)HT}
‖H‖2

A+λB
.

The minimum cost J(g′) is then calculated as

J(g′) = J(g) − tr2{DHT}
‖H‖2

C
= J(g)(1 − ε2(h)),

where

ε(h) =
α̂(h)

√
‖H‖2

C√
‖R‖2

A + λ‖S‖2
B

=
tr{DHT}√

‖H‖2
C

√
‖R‖2

A + λ‖S‖2
B

It is obvious that |ε(h)| ≤ 1 since the cost functions
J(g′) and J(g) is nonnegative. < E.O.F. >

In practice, we can always assume ε(h) ≥ 0 because,
if ε(h) < 0, we simply change the sign of the function h.
Therefore, in the sequel, the absolute symbol |.| is removed.
Correspondingly, we have α̂(h) ≥ 0 because α̂(h) and ε(h)
have the same sign.

Therefore, each boosting round aims at finding the func-
tion h such that the cost function is maximally reduced.
Equivalently, the value of ε(h) is maximized.

ĥ = arg max
h∈H

ε(h) = arg max
h∈H

tr{DHT}√
‖H‖2

C

. (4)

Note that the term
√
‖R‖2

A + λ‖S‖2
B does not depend on

H and hence can be ignored in the above. The correspond-
ing value of α is α̂(ĥ). Finally, the cost J(g′) maximally
decreases the cost J(g) by a factor of (1 − ε(ĥ)2).

3.2. Shrinkage
Shrinkage [3, 6] is another measure for reducing the effect
of overfitting. The idea is very simple: at each round of
boosting, simply shrink the newly selected function αh(x)
by a shrinkage factor η ∈ [0, 1]. The new updating rule is

g′(x) = g(x) + ηα̂ĥ(x),

where α̂ and ĥ are the optimal solutions found above. In
practice, we found that a modest choice of η = 0.5 gives
good results.

Figure 2 summarizes the regression algorithm using
boosting method. Appendix provides a glossary of nota-
tions used in the paper.

4. Image based regression
The image-related entity is the dictionary set H, whose ev-
ery element is based on the image x. Intuitively, this func-
tion set must be sufficiently large such that it allows render-
ing, through a linear combination, highly complex output
function y(x). Following the spirit of the Viola and Jones
[14], we use one-dimensional decision stumpsas primitives
to construct the weak function set H. The advantages of
using decision stumps include (i) that they are robust to ap-
pearance variation; (ii) that they are local features; (iii) that
they are fast to evaluate using the so-called integral image
[14]; and, most importantly, (iv) that they allows an incre-
mental feature selection scheme that will be addressed later.

4.1. Weak function set
A one-dimensional (1D) decision stump h(x) is associated
with a Haar filter feature f(x), a decision threshold θ, and

4



1. Initialization t = 0.

(a) Set the fixed parameter values: µ (the mean vector), A
and B (the normalization matrices), λ (the regulariza-
tion coefficient), and η (the shrinkage factor).

(b) Set the values related to the stopping criteria: Tmax

(the maximum number of iterations), Jmin (the mini-
mum cost function), εmin, and αmin.

(c) Set initial values for t = 0: g0(x) = 0, r0(x) =
y(x), and s0(x) = µ.

2. Iteration t = 1, . . . , Tmax

(a) Find ĥt = arg maxh∈H εt(h) and its corresponding
α̂t(ĥt) and εt(ĥt).

(b) Form the new function gt(x) = gt−1(x)+ηα̂tĥt(x).

(c) Evaluate the approximation error rt(x) = y(x) −
gt(x), the deviation error st(x) = µ − gt(x), and
the cost function J(gt).

(d) Check convergence, e.g. see if J(gt) < Jmin, αt <
αmin, εt < εmin, or combination of them.

Figure 2: Regression algorithm using boosting method.

a parity direction indicator p that takes a binary value of
either +1 or −1.

h(x) =
{

+1 if pf(x) ≥ pθ
−1 otherwise

(5)

Each Haar filter f(x) has its own attributes: type, window
position, and window size. Given a moderate size of image,
one can generate a huge number of Haar filters by varying
the filter attributes. See [14] for details. Denote the num-
ber of Haar filters by M . By adjusting the threshold θ (say
K even-spaced levels), for every Haar filter, one can fur-
ther create K decision stumps. In total, we have 2KM 1-D
decision stumps. Note that the number 2KM can be pro-
hibitively large so that it can even create difficulty in storing
all these decision stumps during training.

A weak function in the present paper is constructed as a
q-dimensional (q-D) decision stump h(x) that simply stacks
q 1D decision stumps.

h(x)q×1 = [h1(x), h2(x), ..., hq(x)]T.

Note that each hj(x) in the above may be associated with a
different parameter. Hence, one can construct a sufficiently
large weak function set that contains (2KM)q weak func-
tions!

4.2. Feature selection
Boosting operates as a feature selection oracle. At each
round of boosting, the features that can maximally decrease
the cost function are selected. However, to transform the

boosting recipe in Figure 2 into an efficient algorithm, there
is a computational bottleneck, that is Step (2a). This step
necessitates a greedy feature selection scheme that is too
expensive to evaluate because, in principle, it involves eval-
uating (2MNK)q decision stumps, a formidable computa-
tional task in practice.

One possible way is to break the q-D regression problem
into q independent 1D regression problems, leading to an
independent feature selection scheme. Consequently, only
2qMNK decision stumps are evaluated at each round of
boosting. However, the independence assumption is too
strong to be hold in real situations.

We propose an incremental feature selection scheme by
breaking the q-D regression problem into q dependent 1D
regression problems. Using the incremental vector

hi(x)i×1 = [h1(x), h2(x), ..., hi(x)]T = [hi−1(x)T, hi(x)]T,

and the incremental matrices Ci, Di, and Hi,

Ci =

[
Ci−1 ci−1

ci−1T
ci

]
, Di =

[
Di−1

di
T

]
, Hi =

[
Hi−1

hi
T

]

we define the incremental coefficient as

εi(h) = tr{DiHiT}/
√

‖Hi‖2
Ci . (6)

Therefore, we learn a 1D decision stump hi(x) at one time.

ĥi = arg max
h∈H

εi(h).

In terms of computation, the incremental selection
scheme requires evaluating 2qMNK decision stumps, the
same as the independent selection scheme. Of course, com-
pared with the independent scheme, there are overhead
computations needed in the incremental scheme because

we calculate matrix quantities like tr{DiHiT} and ‖Hi‖2
Ci ;

whereas in the independent feature selection scheme, the
counterparts are vector inner products. Fortunately, there
exist reusable computations. For example, it is easy to show
that

‖Hi‖2
Ci = ‖Hi−1‖2

Ci−1 + 2hT
i H

i−1T
ci−1 + cihi

Thi.

tr{DiHiT} = tr{Di−1Hi−1T} + dT
i hi. (7)

Although the incremental selection scheme in principle
yields a suboptimal solution, it is better than the indepen-
dence selection scheme because it utilizes the dependence
among the output data dimensions to some extent. In fact,
there exist special cases when the incremental feature se-
lection yields the same solution as the greedy selection
scheme. One such case is that when C = βI (e.g. when
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A = B = I). This makes the denominator term ‖Hi‖2
Ci

in (6) a constant value of iβ2, which does not vary with
different choices of h functions. Therefore, εi(h) only de-

pends on tr{DiHiT}. But, according to (7), maximizing

tr{DiHiT} can be done by maximizing the term dT
i hi in

each incremental step.
To improve robustness and remove bias, we randomly

permutate the order of the dimensions of the output variable.
Other tricks to improve computational efficiency include:
(i) randomly sampling the dictionary set, i.e. replacing M
by a smaller M ′; and (ii) randomly sampling the training
data set, i.e., replacing N by a smaller N ′.

Figure 3 presents the incremental feature selection
scheme.

1. Initialization.

• Create a random permutation of {1, 2, . . . , q}, yield-
ing {< 1 >, < 2 >, . . . , < q >}.

2. Iteration over the dimension of the output variable i =
1, 2, . . . , q

• (optional) Sample M ′ Haar filters from the dictionary
set and form the reduced set of weak functions H′.

• (optional) Sample N ′ data points from the training set.

• Loop over the filter index m = 1, 2, . . . , M ′ and the
threshold level index k = 1, 2, . . . , K to find h<i> =
arg maxh∈H′ ε<i>(h).

• Form the new vector h<i> = [h<i−1>T
, h<i>]T.

• Compute reusable quantities tr{D<i>H<i>T} and
tr{‖H<i>‖2

C<i>}.

Figure 3: Incremental feature selection.

5. Experiments
We tested the proposed IBR algorithm on the three prob-
lems mentioned in beginning of the paper. For compari-
son, we also implemented NPR, KRR and SVR, all using
the RBF kernel function. We used 5-fold cross-validation
as the evaluation protocol and tuned the RBF kernel width
for empirical best performance. Because SVR only works
for the single-output regression problem, we decoupled
the multiple-output regression problem to isolated single-
output ones. For IBR, we simply set A = B = I
and stopped learning after a maximum number of boosting
rounds is reached.

If the output is multidimensional, we applied a whitening

filter to decorrelate the output variable: y = D−1/2VT{y−
µ}, where µ is the mean and D and V are eigenvalue and
eigenvector matrices of the covariance matrix.

Table 1 shows the error statistics and computational time
for evaluating regression outputs of all testing images be-
longing to the 5 testing subsets used in the 5-fold cross val-
idation. We used different error measurement that is mean-
ingful to the data of interest. We collected the error statis-
tics for all testing images and reported their mean, 25% per-
centile, median, and 75% percentile. We used C++ pro-
grams on a PC with 2.4GHz dual CPUs and 3GB memory
to record the computational time.

5.1. Age estimation
Aging modeling [9] is important for face analysis and
recognition. In this experiment, we focused on estimating
the human age.

Data statistics: We used the FGnet aging database [1].
There are 1002 facial images in the database. Five ran-
dom divisions with 800 for training and 202 for testing are
formed. The age ranges from 0 to 69. Normalization was
done by first aligning 68 landmark points provided by [1]
and then performing a zero-mean-unit-variance operation.
However, we kept enough background pixels.

Input/output: The input x is a 60× 60 image; the output
y is his/her normalized age. We converted the actual age to
y = log(y+ 1) to avoid negative regressor output.

Variation: The face images involve all possible vari-
ations including illumination, pose, expression, beards,
moustaches, spectacles, etc. Figure 4 shows sample images
of one person at different ages and with various appearance
variations.

Performance: We computed the absolute age difference
as the error measurement. The proposed IBR approach
(with 500 weak functions, the regularization coefficient
λ = 0.1 and the shrinkage factor η = 0.5) achieves the best
performance and runs fastest. In [9], age estimation is per-
formed on a smaller set with mostly frontal-view images.
The reported mean absolute error in years is 7.48 using a
pure appearance based regressor.

Figure 4: Sample images (before and after normalization) of one
person at different ages.

5.2. Pulmonary tumor detection
In the second experiment, we applied the IBR algorithm to
detect a pulmonary tumor in a CT image [10]. To be more
specific, given an input CT image, we regressed out the cen-
ter position (t, s) and anisotropic spread of the tumor. The
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Table 1: Comparison of different regressors for (a) age estima-
tion, (b) tumor detection, and (c) endocardial wall detection.

NPR KRR SVR IBR
mean err. 8.44 13.56 6.60 5.81

25% per. err. 2.54 3.99 1.38 1.26
median err. 5.50 10.80 4.39 3.15

75% per. err. 10.87 17.99 9.04 7.79
testing time(s) 3.6s 3.6s 3.3s 0.016s

(a)

NPR KRR SVR IBR
mean err. 0.544 0.593 0.557 0.533

25% per. err. 0.420 0.458 0.335 0.332
median err. 0.543 0.609 0.509 0.496

75% per. err. 0.664 0.719 0.796 0.716
testing time(s) 0.63s 0.55s 0.51s 0.02s

(b)

NPR KRR SVR IBR
mean err. 2.438 3.423 2.423 2.148

25% per. err. 1.810 1.484 1.756 1.582
median err. 2.271 2.061 2.013 1.996

75% per. err. 2.850 3.154 2.734 2.516
testing time(s) 668s 534s 512s 0.45s

(c)

2D anisotropic spread is described by a 2 × 2 positive defi-
nite matrix [a11, a12; a12, a22], with a11 > 0 and a22 > 0.

Data statistics: There are 525 CT images in total. Five
random divisions with 400 for training and 125 for testing
are formed. The center position is mostly within 6 pixels of
the image center, but the anisotropic spread is rather arbi-
trary in terms of scale and orientation.

Input/output: The input x is a 33× 33 image; the output
y is a 5-D variable (after whitening), i.e, q = 5. To avoid
the negative output values of a11 and a22, we again used
log(a11) and log(a22). So the whitening filter is applied to

[t, s, log(a11), a12, log(a22)]T.
Variation: Figure 5 shows some sample images that

encompass typical appearance variations: cluttered back-
ground, imaging noise, arbitrary shape, fake signal, etc.

Performance: Since each output parameter defined an
ellipse in the 2D image (See Figure 5 for illustration), we
use an area non-overlapping ratio to measure performance.
Given two ellipses A and B, we measure the area non-
overlapping ratio as

ratio = 1 − area(A
⋂

B)/area(A
⋃

B).

The smaller the ratio is, the better the two ellipses overlap.
The proposed IBR approach (with 500 weak functions, λ =
0.2, and η = 0.5) outperforms the other regressors in terms
of performance and computation. Figure 5 also visualizes
the regressed output, with the ground truth2 superimposed.
These images are selected from the testing subset.

2The ground truth is actually computed using the method in [10] and
may not fit the data well. For example, in the bottom leftmost image, the
ground truth is off; the regressed output gives a better result.
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Figure 5: Sample CT images with ground truth (yellow) and re-
gression result (green).

Figure 6: Sample echocardiograhic images with ground truth
(yellow) and regression result (green).

5.3. Endocardial wall localization
Myocardial wall localization and tracking [16] is a chal-
lenging task in processing echocardiographic images [11]
that is the ultrasound 2D image of the heart. In particular,
accurate localization of the left ventricle is essential to clin-
ical cardiac analysis. In this experiment, we focused on lo-
cating the endocardial wall of the left ventricle in the apical
four chamber view.

Data statistics: There are 7943 images in total. Five
random divisions with 6400 for training and 1543 for testing
are formed.

Input/output: The input x is an 80×74 image; the output
y is a 7-D variable, i.e., q = 7. The endocardial wall is a
nonrigid open contour parameterized by 17 control points,
i.e. with 34 variables. After whitening, we kept only the top
7 principal components.

Variation: Depending on the sonographer’s imaging ex-
perience and the patient’s anatomic structure and tissue
characterization, the left ventricle appearance, which con-
tains heart apex, septal wall, lateral wall, papillary mus-
cle, annulus, etc., varies significantly across patients. Also
signal dropout is often found in ultrasound imaging. Con-
sequently, the endocardial border deforms a lot. Figure 6
shows sample images illustrating the appearance variations.
All these images belongs to one testing subset.
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Performance: We measured the average pixel error for
the control points:

√‖g(x) − y(x)‖2/34. The proposed
IBR approach (with 1500 weak functions, λ = 0.05, and
η = 0.5) surpasses the other regressors in terms of perfor-
mance and computation. In particular, IBR runs more than
1000 times faster than the other regressors because its com-
putational time does not scale up with the number of train-
ing samples. Figure 6 visualizes the ground truth contour
and the regressed contour.

6. Conclusions
We presented a general IBR algorithm using boosting to se-
lect relevant features from the image. Since the regressor
does not depend the training data, it is efficient in terms of
storage and computation. An efficient training algorithm
that performs incremental feature selection was also pre-
sented. Experimental results on real datasets demonstrated
the advantage of the proposed IBR algorithm over others
often used in the literature, such as NPR, KRR, and SVR.
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Appendix

Table 2 provides a glossary of notations used for the IBR al-
gorithm. Below presents the detailed computation required
for the main theorem.

J(g′)

=

N∑
n=1

‖y(xn) − g′(xn)‖2
A + λ

N∑
n=1

‖µ − g′(xn)‖2
B

=

N∑
n=1

‖y(xn) − g(xn) − αh(xn)‖2
A

+λ

N∑
n=1

‖µ − g(xn) − αh(xn)‖2
B

=

N∑
n=1

‖r(xn) − αh(xn)‖2
A + λ

N∑
n=1

‖s(xn) − αh(xn)‖2
B

= tr{A[R− αH][R− αH]T} + λtr{B[S− αH][S− αH]T}
= (tr{ARRT} + λtr{BSST})

−2α(tr{ARHT} + λtr{BSHT})
+α2(tr{AHHT} + λtr{BHHT})

= J(g) − 2α tr{(AR+ λBS)HT} + α2‖H‖2
A+λB

= J(g) − 2α tr{DHT} + α2‖H‖2
C
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